Numerical treatment of a class of optimal control problems arising in economics
نویسندگان
چکیده
The approximate solution of the problem of controlling an initial value problem for a linear system of autonomous ordinary differential equations is considered. The corresponding homogeneous solution to the differential equation is assumed to be non-expansive and the inhomogeneity is a linear function of the control variable that is constant along a priori given sub-intervals. The optimal control minimises a convex functional that depends, possibly in a nonlinear way, on the solution of the differential equation. Infinite time horizons are allowed. In view of the piecewise constant control, the corresponding Lagrangian can be split into the sum of Lagrangians acting on sub-intervals. The two algorithms suggested are based upon an iterative process that takes advantage of this splitting as well as of the explicit solution to the differential constraints. Convergence results are provided under suitable assumptions on the problem’s data. Finally, numerical tests for a model of global warming demonstrate the performance of the algorithms.
منابع مشابه
A Numerical Approach for Fractional Optimal Control Problems by Using Ritz Approximation
In this article, Ritz approximation have been employed to obtain the numerical solutions of a class of the fractional optimal control problems based on the Caputo fractional derivative. Using polynomial basis functions, we obtain a system of nonlinear algebraic equations. This nonlinear system of equation is solved and the coefficients of basis polynomial are derived. The convergence of the num...
متن کاملA spectral method based on the second kind Chebyshev polynomials for solving a class of fractional optimal control problems
In this paper, we consider the second-kind Chebyshev polynomials (SKCPs) for the numerical solution of the fractional optimal control problems (FOCPs). Firstly, an introduction of the fractional calculus and properties of the shifted SKCPs are given and then operational matrix of fractional integration is introduced. Next, these properties are used together with the Legendre-Gauss quadrature fo...
متن کاملNew operational matrix for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative
In this paper, we apply spectral method based on the Bernstein polynomials for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative. In the first step, we introduce the dual basis and operational matrix of product based on the Bernstein basis. Then, we get the Bernstein operational matrix for the Jumarie’s modified Riemann-Liouville fractio...
متن کاملNumerical Solution of Delay Fractional Optimal Control Problems using Modification of Hat Functions
In this paper, we consider the numerical solution of a class of delay fractional optimal control problems using modification of hat functions. First, we introduce the fractional calculus and modification of hat functions. Fractional integral is considered in the sense of Riemann-Liouville and fractional derivative is considered in the sense of Caputo. Then, operational matrix of fractional inte...
متن کاملA Neural Network Method Based on Mittag-Leffler Function for Solving a Class of Fractional Optimal Control Problems
In this paper, a computational intelligence method is used for the solution of fractional optimal control problems (FOCP)'s with equality and inequality constraints. According to the Ponteryagin minimum principle (PMP) for FOCP with fractional derivative in the Riemann- Liouville sense and by constructing a suitable error function, we define an unconstrained minimization problem. In the optimiz...
متن کاملA Numerical Solution of Fractional Optimal Control Problems Using Spectral Method and Hybrid Functions
In this paper, a modern method is presented to solve a class of fractional optimal control problems (FOCPs) indirectly. First, the necessary optimality conditions for the FOCP are obtained in the form of two fractional differential equations (FDEs). Then, the unknown functions are approximated by the hybrid functions, including Bernoulli polynomials and Block-pulse functions based o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Optimization Methods and Software
دوره 21 شماره
صفحات -
تاریخ انتشار 2006